Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast

نویسندگان

  • Zhuo Wang
  • Samuel A Danziger
  • Benjamin D Heavner
  • Shuyi Ma
  • Jennifer J Smith
  • Song Li
  • Thurston Herricks
  • Evangelos Simeonidis
  • Nitin S Baliga
  • John D Aitchison
  • Nathan D Price
چکیده

Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.

Prediction of metabolic changes that result from genetic or environmental perturbations has several important applications, including diagnosing metabolic disorders and discovering novel drug targets. A cardinal challenge in obtaining accurate predictions is the integration of transcriptional regulatory networks with the corresponding metabolic network. We propose a method called probabilistic ...

متن کامل

Transcriptional Regulation of Metabolism and Behavior: Insights from Reconstruction and Modeling of Complex Biochemical Networks by Sriram Chandrasekaran Dissertation

Prediction of metabolic changes that result from genetic or environmental perturbations has several important applications including diagnosing metabolic disorders and discovering novel drug targets. A cardinal challenge in obtaining accurate predictions is the integration of transcriptional regulatory networks with the corresponding metabolic network. We propose a new method called Probabilist...

متن کامل

Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.

We describe the use of model-driven analysis of multiple data types relevant to transcriptional regulation of metabolism to discover novel regulatory mechanisms in Saccharomyces cerevisiae. We have reconstructed the nutrient-controlled transcriptional regulatory network controlling metabolism in S. cerevisiae consisting of 55 transcription factors regulating 750 metabolic genes, based on inform...

متن کامل

Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis.

The adaptation of microorganisms to their environment is controlled by complex transcriptional regulatory networks (TRNs), which are still only partially understood even for model species. Genome scale annotation of regulatory features of genes and TRN reconstruction are challenging tasks of microbial genomics. We used the knowledge-driven comparative-genomics approach implemented in the RegPre...

متن کامل

How networks change with time

MOTIVATION Biological networks change in response to genetic and environmental cues. Changes are reflected in the abundances of biomolecules, the composition of protein complexes and other descriptors of the biological state. Methods to infer the dynamic state of a cell would have great value for understanding how cells change over time to accomplish biological goals. RESULTS A new method pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017